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ABSTRACT 
Non-native lionfish have been recorded throughout the western Atlantic on both 
shallow and mesophotic reefs, where they have been linked to declines in reef health. 
In this study we report the first lionfish observations from the deep sea (>200 m) in 
Bermuda and Roa tan, Honduras, with lionfish observed to a maximum depth of 304 m 
off the Bermuda platform, and 250 m off West End, Roa tan. Placed in the context of 
other deeper lionfish observations and records, our results imply that lionfish may be 
present in the 200-300 m depth range of the upper-bathyal zone across many locations 
in the western Atlantic, but currently are under-sampled compared to shallow habitats. 
We highlight the need for considering deep-sea lionfish populations in future invasive 
lionfish management. 
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INTRODUCTION 
Non-native lionfish, first documented in the western Atlantic region in the I 980s (Schofield, 

2009; Schofield, 2010), are considered a major threat to western Atlantic reef communities 

(Sutherland et al., 20 JO). Lionfish are benthic generalist predators, and their presence on 

shallow coral reefs has been associated with up to 65% decline in their prey fish biomass 

( Green et al., 2012), leading to overall declines in fish recruitment of up to 79% (A/bins & 

Hixon, 2008). In some cases lionfish have been observed to feed on critically-endangered 

reef fish ( Rocha et al., 2015). On both shallow reefs and mesophotic coral ecosystems 

(MCEs, reefs from 30 to approximately 150-180 m depth; (Hi11derstei11 et al., 2010)), 

non-native lionfish are thought to cause increased algal cover by consuming herbivores 

and causing trophic cascades (I esser & Slattery. 201 l ; S/(l(tery & Lesser, 2014; Ki11di11ger 

&A /bins, 201 7). Native to the Indian and Pacific oceans and Red Sea, lionfish in the 

western Atlantic have now been recorded from New York, USA in the north (Meister 

et al. , 2005), to as far south as the southeastern coast of Brazil (Ferreira et al. , 201 5). In 

addition, there is a second lionfish invasion currently underway in the Mediterranean Sea 

How to cite this article Gress el al. (201 7), Lionfish (Pterois spp.) invade the upper-bathyal zone in the western Atlantic. PeerJ 5:e3683; 
DOI t0.7717/peerj.3683 



(Kleto11, Hall-Spencer & Kleitou, 2016). Two species of non-native lionfish have been 

recorded in the western Atlantic: Pterois volitans (Linnaeus, 1758) and P. miles (Bennett, 

1828) (Hmn ner, Freshwater & Whitfield, 2007), though they are believed to be ecologically 

synonymous in their impacts to western Atlantic marine communities (Morris et al. , 2009). 

The majority of research on lionfish invasions has focused on shallow coral reefs 

( <30 m), mangroves and seagrass beds (Morris et al. , 2009; Claydo11, Calosso & Traiger, 

20 I 2). However, recent studies have highlighted their widespread presence on M CEs across 

the western Atlantic invaded range (Andradi-Brown et al., 2017a ), which is unsurprising, 

as they have been recorded on MCEs in many locations in their native range. For example, 

P. miles at 65 m in the Red Sea (Brokovich et al., 2008), and P. volitans at 75 m in New 

Caledonia (Kulbicki et al., 2012), 61 min Micronesia (Andradi-Brown et al., 2017a), 61 m 

in the Philippines (Andradi-Brown et al. , 2017a), and at 80 min American Samoa ( Wright, 

2005). With two exceptions (see next paragraph), MCEs represent the deepest depths 

lionfish have been previously reported from in the western Atlantic. For example, from 

remote operated vehicle (ROV) surveys: 112 min the northwestern Gulf of Mexico (Nuttall 

et al., 20 I 4), 100 m off North Carolina, USA (Meister et al., 2005), 126 m on the Desecheo 

Ridge west of Puerto Rico (Quattrini et al., 2017), and 167 m on the Conrad Seamount in 

the Anegada Passage ( Quattrini et al., 201 7). Lionfish have also been observed at 120 m 

from submersible dives in Honduras (Schofield, 20/0), and collected from trawl surveys 

>80 m depth in the eastern GulfofMexico (Switzer ct al., 2015). In addition, diver-based 

surveys on MCEs have reported sightings in the 30-100 m range in Puerto Rico (Bejarano, 

Appeldoorn & Nemeth, 2014), Bermuda (Pinheiro et al., 2016), and the Lesser Antilles (De 

Leon et al., 2013). Therefore, it has been suggested that lion fish have widely colonised 

MCEs across the western Atlantic (A11dradi-Brow11 et al., 2017a). 

In August 2010, while conducting submersible surveys off Lyford Cay, Nassau, The 

Bahamas, lionfish were observed at 300 m (pers. comm. from RG Gilmore in: A/bins & 

Hixon, 2013; McGuire & Hill, 201 4). While in Cura~ao, the Curasub has reported observing 

lionfish regularly down to 247 m depth (Tornabene & Baldwin, 2017). To our knowledge 

these sightings represent the maximum known depth distribution of lion fish in the western 

Atlantic, and the only records oflionfish in the deep sea ( defined as > 200 m depth; Rogers, 

201 5). It is not clear whether these sightings represent isolated incidents oflionfish reaching 

these depths, or whether lionfish more regularly use habitats in the >200 m depth range, 

but they have not previously been recorded because of limited surveys within this depth 

range. 

In this study we report visual observations oflionfish >200 m depth in two new locations 

within the western Atlantic region: Bermuda and Roatan, Honduras. We also consider 

other lion fish records that could potentially indicate that lionfish may be more widespread 

at > 200 m depth across the western Atlantic range. 

METHODS 
Bermuda is a series of islands located far off the continental shelf in the northwestern 

Sargasso Sea (Fig. IA). The islands exist on a large shallow-water platform (approximately 
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Figure I Map showing location of deepest observed lionfish for (A) Bermuda and (B) Roa tan, Hon­
duras. Inset maps indicate the locations of Bermuda and Roatan respectively relative to the western At­
lantic region. In (A) the dashed line indicates the 50 m depth contour to show the outline of the Bermuda 
platform. The reef drops off steeply at this location, such that our 304 m lion fish observation is close to the 
50 m depth contour. 
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20 m depth, 623 km2 area) which are the eroded remains of a Meso-Cenozoic volcanic 

peak ( Coates et nl., 20 I 3). The platform is surrounded by a shallow slope, which transitions 

into near-vertical walls at around 100 m ( Coates et al., 20 I 3). While deep reef areas of 

Bermuda are poorly studied, with few observations below mesophotic depths, there are 

established MCE communities around Bermuda to at least 80 m (Pi11heiro et al., 2016). 

MCE to deep-sea benthic organisms and benthic-associated fish surveys were undertaken 

during daylight hours using the Nemo and Nomad Triton 1000-2 class submersibles (Vero 

Beach, Florida, USA) down to 300 m depth around the edge of the Bermuda platform 

during July and August 2016 as part of the Nekton Foundation/XL-Catlin Deep-Ocean 

Survey-Mission l (www.nektonmission.org). In total, 17 dives were conducted to 300 m 

between both submersibles. Research permits for Bermuda were issued by the Department 

of Environment and Natural Resources, Bermuda (No. 2016070751). 

In contrast, Roa tan is an island in the Caribbean Sea located off the north coast of 

mainland Honduras (Fig. I B). Roatan is approximately SO km long and 2-4 km wide, and 

has a total land area of about 200 km2• This island is surrounded by shallow fringing coral 

reefs, which transition into MCEs at increased depths. The Roatan Institute of Deepsea 

Exploration conducts commercial submarine tourism, using the Idabel submarine allowing 

tourists to observe deep-sea habitats to 610 m depth. With year-round operations from Half 

Moon Bay, West End, Roatan, Idabel conducted 224 dives ::".:300 m between Jan 2015-April 

2017. During March 20 17 visual observations ofbenthic communities and their associated 

fish communities were conducted on a night dive to 300 m depth. Visual/video lionfish 

observations in Roatan were covered under the Roatan Institute of Deepsea Exploration 

operating permit issued by the M unicipalidad de Roatan (No. 139 l ). 

To identify other records of deep lionfish we examined 6,814 lionfish records from the US 

Geological Survey Nonindigenous Aquatic Species database ( USGS-NAS, 2017). Lionfish 

records in the database have been gathered from media reports, scientific publications and 

direct reports to the database managers. All records contain a GPS location, and in some 

cases a short description of the conditions under which the lionfish was observed and/or 

a photo of the lionfish. In some cases the descriptions accompanying records included 

depth information, though this is not formatted in a consistent way (for example using 

different units such as metres, feet, fathoms) and contained within a larger text record 

description. We initially viewed these descriptions to identify any records directly stating 

lionfish observations at depths ::".:200 m, converting any depth information provided into 

metres for consideration. To further identify potential lionfish records from ::".:200 m depth, 

we downloaded the 2014 General Bathymetric Chart of the Oceans (http://www.gebco.net) 

30 arc-second interval grid bathymetry for the western Atlantic region. We used the 

raster package (Hijmans, 2015) in R (R Core Team, 2013 ) to identify approximate depths 

of all lionfish records based on GPS location. All records associated with bathymetry 

::".:200 m depth were individually reviewed and classified as potential deep-sea individuals, 

or excluded. Records were excluded for any of the following reasons: (i) specific depth 

information was available in the record indicating the fish was <200 m depth, (ii) the 

record reports that the observation was made by a diver or snorkeler, (iii ) the location 

of the record is a well known/established shallow reef diving/snorkelling site, or (iv) the 
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lionfish were collected by hook-and-line making it highly unlikely they were from ::::200 

m depth. Raw data are available from the US Geological Survey Nonindigenous Aquatic 

Species database ( USGS-NAS, 201 7), and ESMl contains a list of all lionfish GPS locations 

present in the database at the time of analysis that were used in this study. ESM2 contains 

the raw R code used to assign a depth to each lionfish record. 

RESULTS 
In Bermuda during daytime dives on 28 July 2016 off the northeastern edge of the 

Bermuda platform at 32.483683 N, 64.59395 W (Fig. IA; GPS coordinates in WGS84 

format), multiple lionfish were observed. The deepest lionfish were a single individual 

observed at 304 m depth, and another individual at 297 m (Fig. 2). Water temperature 

was recorded on the submersible during the dive as 19.7 °Cat 300 m. The laser points in 

Fig. 28 are 0.25 m apart, suggesting an approximate total length of 21 cm for this individual 

at 297 m. 

In Roatan, on 11 March 2017 off Half Moon Bay, West End at 16.308565 N, 86.596681 

W (Fig. I B) five lionfish were observed and photographed down to a depth of 240 m 

(Fig. 3 ). Individuals were seen in on lower-MCEs ( 180 m; Fig. 3A), and the upper-bathyal 

(240 m; Fig. 38). Water temperature was recorded on this dive as approximately 15 °Cat 

240 m. However, with year-round tourist submarine dives operating from Half Moon Bay 

visiting deep reef habitats ::::300 m (224 dives between Jan 2015-April 2017), the Idabel has 

regularly observed lionfish to a maximum depth of 250 m. 

When analysing records from the US Geological Survey Nonindigenous Aquatic Species 

database, no records were found explicitly stating a depth of observation ::::200 m. However, 

186 records out of the 6,814 records were associated with bathymetry ::::200 m. Of these, 

after scrutinising the text descriptions, we excluded 185 records as being too shallow. Many 

of these records represented sites with steep walls spanning from shallow reefs to >200 m 

depth, and while the resolution of the available bathymetry suggested these were ::::200m, 

when checking the associated meta-data for these 185 records it clearly indicated that the 

lionfish were most-likely <200 m. The one record that we retained did not contain enough 

detail to confirm or reject it as a sighting from > 200 m. Figure 4 shows the locations of this 

unconfirmed record, the previously confirmed 300 m lionfish observation in the Bahamas 

(A/bins & Hixon, 201 3; McGuire & Hill, 2014), the recorded observations in Cura<;:ao at 247 

m (Tornabe11e & Baldwin, 201 7), and the locations of our deep-sea lionfish observations in 

Bermuda and Roatan. We have now added our new deep-sea lionfish observations to the 

US Geological Survey Nonindigenous Aquatic Species database. 

DISCUSSION 
In this study we report deep-sea lionfish observations from the upper-bathyal zone in two 

new locations within the invaded western Atlantic lionfish range. Both in Bermuda, close 

to the northern limit of the lion fish overwintering invaded range (Eddy et al., 2016), and in 

Roatan, within the centre of the lionfish invaded range (Schofte/d, 2010), we report lionfish 

>200 m depth. Because of the large geographical distance between our observations, 
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Figure 2 Lionfish at 297 m depth off the northeastern slope of the Bermuda platfonn. (A) The lionfish 
resting on the reef is indicated within the red circle. Other fish species shown are Gephyroberyx darwinii 
and cf. Pronotogrammus martinicensis. (B} Lionfish swimming over the benthos. The laser dots are sepa­
rated by 0.25 m. Both (A) and (B) show the same individual that swam across the benthos as disturbed by 
the submersible. 

combined with the previous confirmed observations of lionfish > 200 m from the Bahamas 

(pers. comm. from R.G. Gilmore in: A/bins & H ixo11, 2013) and Curac;:ao (Tomabe11e & 

Baldwil1, 20 I 7), we suggest that lion fish may be more widespread and common than 

presently understood in deep-sea habitats in the 200-300 m depth range and that this 

deeper aspect of the lionfish invasion has likely been under-sampled. 

When searching the US Geological Survey Nonindigenous Aquatic Species database, we 

found one lionfish record located over bathymetry ~200 m without stating a depth or giving 

any indication of depth. While the US Geological Survey Nonindigenous Aquatic Species 
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Figure 3 Lionfish off Half Moon Bay, West End, Roatan, Honduras. (A) Lionfish swimming over the 
benthos at 180 m depth, and (B) two lionfish resting at 240 m depth. 

records have been placed over bathymetry in previous studies, leading to the suggestion 

that lionfish may extend their maximum depth to 610 m (Jo'111sto11 & Prirkis, 201 I) , our 

results indicate depth records generated in this way must be treated with caution. The grid 

resolution of bathymetry available at a regional level is not sufficient to generate precise 

lionfish depth information over undersea structures such as walls and steep slopes, where 

large differences in depth occur within one raster grid square. For this reason, despite 

identifying 186 records associated with deeper bathymetry, 185 of these were excluded for 

containing either specific depth details or enough information to suggest that they were 
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Figure 4 Locations of confirmed and possible lionfish observations ;::: 200 m depth in the western At­
lantic. The confirmed sightings represent our observations in Bermuda and Roatan, and the previously re­
ported observations in the Bahamas (A /bins & Hixon, 2013) and Curai;ao (Tornabene & Baldwin, 2017). 
The unconfirmed sighting represent a record from the US Geological Survey Nonindigenous Aquatic 
Species database associated with bathymetry ;:::200 m, though there is no direct information on the depth 
of the lion fish observation for this record. 

most likely shallower reef or MCE observations. Some of these excluded observations were 

from lionfish associated with oil and gas rigs, where Jionfish were associated wi th the rig 

structure at shallower depths rather than actually with seabed benthic habitats. Therefore, 

from simply matching GPS locations with bathymetry, these records would appear to be 

>200 m and far from any shallower habitat, yet they actually represent shallower lionfish. 

As many of these records in the US Geological Survey Nonindigenous Aquatic Species 

database come from recreational and scientific divers and fisheries, we would expect these 

records to be biased towards shallow reefs where the majority of sampling has occurred. 

Therefore, it was not surprising that 6,628 of the 6,814 records were associated with shallow 

reef or MCE bathymetry. With this biased survey effort to the shallows, the lack of records 

>200 min the database should be treated as an indication of under-sampling at depth, and 

not that lionfish are not present in the upper-bathyal. 

It is not clear why differences in the maximum depth of observations exist between 

Roatan, our observations in Bermuda and previous observations in the Bahamas and 

Curar;ao. While in Bermuda we observed lionfish to the maximum survey depth (304 m), 

in Roatan, despite 224 submarine dives to ~300 m over the past 2.3 years, lionfish have 

not been observed deeper than 250 m. There are many possible explanations related to 

changing environmental conditions, such as temperature and light, or avai lability of prey. 
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For example, lionfish are limited by temperature ( Whitfield et al., 2014; Dabruzzi, Benne// 

& Fa11g11e, 201 7), with lab experiments suggesting they are unable to survive temperatures 

< 10 °C, but crucially they ceased feeding at temperatures < 16.1 °C (Kimball et al. , 2004 ). 

While detailed temperature data across the depth gradient is not available for the locations 

we surveyed, water temperature was approximately 15 °C at 240 m in Roatan when we 

photographed lionfish in March 2017. Therefore, it is possible that the 250 m maximum 

depth oflionfish observations around Roatan may be caused by temperature limitation. In 

contrast, water temperature was 19.7 °C in Bermuda at 300 m, above the temperature of 

feeding cessation for lionfish ( Kimball et al., 2004). This suggests that if temperature is the 

main limiting factor for maximum depth, we may expect lionfish to extend even deeper 

than 304 m in Bermuda. 

Other factors such as light could also influence the maximum depth for lionfish. Lionfish 

are visual predators ( Cure et al., 20 I 2); therefore, despite previous studies indicating reef 

fish have high visual system plasticity to adapt to low light levels at depth (Broko11ic/1 et al., 

2010), it is likely they will be limited by light. Bermuda has high light penetration (Fricke & 

/1/eischner, 1985; Coates et al., 20 J 3), while Roa tan suffers from higher sedimentation rates 

(Mehrtens et al., 2001 ; Harborne, Afzal & Andrews, 2001), likely reducing light penetration 

to lower levels than Bermuda. Further research is required to understand the ecological 

and physiological constraints on maximum lionfish depths. 

Little is known about the potential impacts of invasive lion fish on the upper-bathyal 

zone. However, shallow reef research has suggested large declines in native reef fish 

abundance and recruitment are caused by lionfish (A/bins & Hixon, 2008; Green et al., 

2012). Shallow reef fish species generally have higher individual and population growth 

rates when compared to deep sea fish species (Rogers, 1994; Norse et al., 201 2). Therefore, 

predation by lionfish may have greater potential for damage to native fish communities 

in the upper-bathyal zone. With so few records of bathyal lionfish and no quantitative 

estimates of lionfish densities, the ecological impacts at >200 m depth is unknown. 

Current lionfish management is highly biased towards shallow reef habitats, with 

diver-conducted culling the major control measure implemented in the western Atlantic 

(Morris et al., 2009). While shallow reef culling has been found to reduce lionfish densities 

(Frazer et al., 20 I 2) and help native fish populations recover ( Green et al., 2014), a recent 

study has suggested strong depth-specific effects of culling on lionfish densities, with 

substantial lionfish populations remaining on MCEs despite shallow culling (A11dradi­

Brow11 et al., 201711 ). Previous modelling studies have highlighted that substantial deep 

refuges for lionfish have the potential to undermine current management programmes 

(Arias-Gonzalez et al. , 201 I). Therefore, iflionfish are widespread in the 200-300 m depth 

range across the western Atlantic this raises further challenges for lionfish management. 

There are currently few effective methods for lionfish removal in water too deep for diving, 

with trapping being the only widely used method. In Bermuda, lobster traps have been 

used to remove lionfish from MCEs, with trap modifications substantially reducing bycatch 

of other fish species (Pitt & Troll, 2015). Though measures of trapping effectiveness for 

reducing deep lionfish populations are stiJJ lacking. Traps could be trialled deeper for 
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lionfish control in the 200-300 m range, and cameras used to monitor effects on lionfish 

densities. 

This study documents non-native lionfish in the upper-bathyal zone in Bermuda, and 

Roatan, Honduras for the first time. Our observations, combined with other lionfish 

records, suggest that lionfish could potentially be present in 200-300 m depth habitat in 

many locations in the western Atlantic. Further surveys should be conducted to assess how 

widely lionfish are using upper-bathyal habitats, and to establish their population densities. 

Our results highlight the need to consider deeper lionfish populations in management 

programmes. 
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